3GPP体制下的自组网技术
环球专网通信认为,尽管自组网技术一直都是业界研究的热点,但是该技术直到4G规模商用也没有进入主流3GPP标准规范之中,主要原因还是运营商市场对自组网应用的需求并不是太多。
相比运营商网络,无线专网要求更广的覆盖范围、更灵活的组网方式和更强的上传容量,需要支持脱网直通、多跳桥接以及无中心节点自组网等功能,而宽带自组网技术是满足上述需求的关键,因此3GPP标准在R12及后续版本中都对自组网技术进行了重点研究,并形成了相关的标准。
3GPP标准在R12版本中增加了邻近服务功能(Proximity Service, ProSe),定义了相应的空口,即PC5接口,以及空口技术规范,即Sidelink规范。在LTE帧结构的基础上,Sidelink规范增加了discovery信道,用于终端之间的相互发现,通过同步信号实现终端之间的同步,而对于控制信道和业务信道则延用了LTE标准。Sidelink空口规范支持蜂窝小区内和小区外的终端之间直接通信,终端之间可以自组成网,因此,Sidelink实际上就是3GPP体制下的宽带自组网技术的空口规范,是未来各种3GPP体制自组网产品的技术基础。
相比COFDM封闭技术体制的自组网技术,3GPP体制的自组网技术能够充分利用4G以及5G的开放的先进技术,相关的产品也能够充分利用3GPP成熟的产业资源,从而大幅提升产品的性能指标,扩展应用场景,增强实战效果。其中,一些关键的技术和功能包括:
1、信道编解码
业务信道采用Turbo码,其编码增益比COFDM自组网常用的卷积码具有显著的提升;
2、高阶调制
最高可以支持256QAM,进一步提升频谱效率。利用成熟的AMC机制,可以根据信道条件动态调整调制阶数,保持空口流量的平稳;
3、多天线技术
在R14版本中,Sidelink规范增加了发射分集功能,,为后续进一步引入空分复用奠定了基础。利用LTE成熟的MIMO技术,3GPP自组网技术能够显著提升频谱效率,在两天线配置下,频谱效率能够达到68bps/Hz,比COFDM自组网的频谱效率提升了45倍,这对于频谱资源有限的专网用户非常重要;
4、HARQ技术
融合重传和前向纠错功能,显著提升空口传输性能,特别是空口的稳健性,有助于传输时延的减小;软合并功能能够进一步提升纠错能力;
5、QoS机制
非3GPP体制的自组网产品大都没有完整的端到端QoS机制,只是一个IP管道而已。但是在ProSe功能中,定义了数据包优先级(ProSe Per-Packet Priority:PPPP),针对语音、视频、数据等不同的业务进行分级保障,也可以针对不同的用户组进行分级保障。QoS分级保障是无线专网的必要需求;
6、新波形
利用F-OFDM、UFMC等5G中讨论的新波形技术,3GPP自组网技术能够更加灵活、高效地利用专网有限的频谱资源;
上述这些功能对于传统自组网大多还是新技术,而这些功能在规模部署的4G网络中已经证明能够显著提升无线性能,因此也将显著提升无线自组网的无线性能。当然,随着更多应用场景的引入,Sidelink规范自身也在不断完善。在R12的基础上,Sidelink规范在R13中增加了跨载波终端发现、数据包优先级、UE-to-Network中继等功能,在R14中增强了中继的功能,能够支持更多的跳数,结合桥接功能,单个蜂窝小区的覆盖范围有了更为明显的提升。Sidelink规范在R14中也被运用到V2X标准中,用于车与车、车与路边单元之间的直接通信,基于车联网的应用要求,在当前的R15版本讨论中,载波聚合、64QAM、发射分集、更短子帧等关键技术和功能极有可能增加到规范之中,而在R16版本的早期讨论中,包括 V2X切片、E2E QoS、多播、定位等新功能也列上了讨论的议题。
想了解更多相关信息,可以咨询北京万蓝拓通信技术有限公司,电话010-84848775 谢谢!